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Abstract. An analytical method to obtain the steady-state nucleation flux of binary liquid
droplets is developed. The method is based on the solution of a Fokker–Planck equation for the
concentration of clusters where both number (size) and cluster-energy fluctuations are included.
The Fokker–Planck equation is solved in the vicinity of the saddle point. The kinetic prefactor
is found to depend on the product of the three eigenvalues of a matrix that describes fluctuations
about the critical cluster. The explicit, analytical expression for the total steady-state nucleation
rate is applied to the water–ethanol binary system. The model predicts a nucleation rate that is
slightly higher than the classical nucleation rate.

1. Introduction

Nucleation is the initial stage of a first-order phase transition that takes place in various
energetically metastable or unstable systems. The formation of water droplets and ice
crystals in the atmosphere, the casting of metals, and bubble formation are just a
few examples of nucleation-related phenomena. One- and two-component nucleation
have received extensive treatment in the literature, both in experimental and theoretical
investigations (the reader is referred to the classic works [1] and [2] or more recent
reviews [3] and [4]). Theoretical analyses of nucleation problems have been based on
numerous, complementary approaches. The first approach, which is referred to as the
classical nucleation model, was formulated by Becker and Döring [5], Volmer [6], and
Turnbull and Vonnegut [7]. This theory is based on the phenomenological concept of a
droplet that is viewed as a group of molecules which interact strongly among themselves
and weakly with the rest of the system. According to the classical theory, the nucleating
cluster is treated with equilibrium thermodynamics as a macroscopic droplet whose free
energy of formation depends crucially on the bulk surface tension. The kinetics by which
small clusters of the new phase gain or loose particles is based on ideas developed in
chemical kinetics. It is assumed that clusters grow or shrink via the gain or loss of single
molecules, an approximation that is reasonable for condensation at low pressures.

Recent developments within the framework of the classical theory (see, for example,
[8, 9]) have been partly successful in explaining experimental data for one-component,
homogeneous nucleation. However, results based on the classical theory show significant
discrepancies for the temperature dependence of the nucleation rate [10]. Moreover, the
classical theory being a phenomenological theory lacks a sound microscopic foundation.
Alternative approaches to the classical theory either start from a microscopic point of view
or use extensive computer simulations, see, for example [2, 11–13].
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Two-component, homogeneous nucleation (binary nucleation) differs in a significant way
from one-component (unary) nucleation. Whereas in one-component systems nucleation
occurs in supersaturated systems, binary nucleation can occur even when a mixture
of vapours is unsaturated with respect to the pure substances. Consequently, binary
nucleation is the predominant particle-formation mechanism in the atmosphere, where
various condensable vapours exist, which, however, are not present in high supersaturations.
The importance of two-component nucleation for atmospheric processes motivated us to
develop a steady-state nucleation model for binary mixtures and to apply it to the water–
ethanol system. This system was chosen because large discrepancies between theoretical
predictions based on the classical theory and experimental results have been reported
[14, 15].

The binary nucleation problem was first studied by Flood [16] and then by Reiss [17].
These initial results have been refined and extended by numerous authors, we refer the
reader to [18–22]. Heterogeneous binary nucleation has recently been studied in [23].

The present work is concerned with the derivation of an expression for the steady-state
total nucleation rate for binary systems where fluctuations in number (size) and cluster energy
are included. The analytical expression is based on the derivation and solution of a Fokker–
Planck equation for the cluster concentration. The fundamental idea is that the transition
to the stable phase is most likely to occur via a passage through the lowest intervening
saddle point of the free energy that divides the metastable phase from the stable phase.
Consequently, the problem reduces to solving the appropriate Fokker–Planck equation in
the vicinity of the saddle point.

Our work was motivated by the pioneering work of Langer [24] to solve
multidimensional Fokker–Planck equations that appear in nucleation phenomena, and the
more recent work of Barrett [25] where Langer’s ideas are used to derive an expression
for one-component nucleation. It may be considered an extension of Barrett’s analysis to
two-component systems. Even though we derive an expression for the nucleation rate that is
general, we evaluate it using the classical theory Gibbs free energy of formation of a cluster.
Numerical results are compared with experimental data for the water–ethanol system. In a
future work our results will be compared with Stauffer’s [18] and those of Wilemski and
co-authors [22]: the emphasis will be on the effect of energy fluctuations on direction of
growth of the nucleating droplet in the saddle-point approximation. Our analysis is easily
extended to multicomponent nucleation.

2. Classical theory of binary nucleation

The first treatment of homogeneous, binary nucleation was developed by Reiss [17], and
later refined by Stauffer [18]. It is an extension of the usual treatment of nucleation of a
single vapour. A droplet fluctuation of the new binary phase is stabilized if its free energy
of formationF is large enough to overcome the free energy barrierF? that separates the two
phases. According to the classical treatment the free energy of the formation of the droplet
F has a saddle point as a function ofn1 andn2 whereni is the total number of molecules
(monomers) of species,i, in a droplet. The saddle point defines the critical droplet free
energy and the corresponding composition.

Under the capillarity approximation the free energy of formation of a liquid embryo
from a binary mixture of vapours is expressed as the sum of a volume and a surface term,

F = n1δµ1+ n2δµ2+ γA(n1, n2) (1)

whereni is the number of molecules of speciesi in the droplet,γ is the surface tension,
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A(n1, n2) is the surface area of the binary droplet, and

δµi = µli − µgi (i = 1, 2) (2)

whereµli is the liquid-phase chemical potential of speciesi, andµgi is the gas-phase chemical
potential. In the case of the constant temperature process, the change of the Helmholtz free
energy from the vapour to the liquid phase (droplet formation) has an extremum, whereas
in the case of constant temperature and pressure, the Gibbs free energy difference has an
extremum. However, the change of the Gibbs free energy during a phase transition is
equivalent to a change of the Helmholtz free energy if the vapour pressure before and after
the transition is the same [2]. Consequently, either free energy can be used in the analysis
of nucleation rates.

For spherical droplets and under the assumption that the partial molecular volumesvi
are independent of pressure the surface area of the critical droplet may be expressed in
terms of the critical droplet radiusrcr by

A(n1, n2) = 4πr2
cr = (36π)1/3(n1v1+ n2v2)

2/3. (3)

This equation defines the critical droplet radius.
The critical droplet composition is given by the composition at the saddle point. It is

defined by the extremal conditions (Gibbs–Thomson equations)

∂F

∂n1

∣∣∣∣
n2,T ,P

= 0 (4)

∂F

∂n2

∣∣∣∣
n1,T ,P

= 0 (5)

whereT is the absolute temperature andP is the pressure. It should be stressed that the
derivatives that define the saddle point are taken keeping the gas-phase partial pressures
constant [26]. There has been considerable discussion in the literature on whether the
compositional derivatives of the surface tension appear in equations (4) and (5). In fact,
they are absent because under the capillarity approximation one must distinguish between
surface composition and bulk (internal) droplet composition. The use of the Gibbs–Duhem
equation for the bulk liquid phase and the Gibbs–Duhem adsorption equation for the surface
ensures that the surface tension derivatives do not appear in the equations that define the
saddle point. When the surface-bulk decomposition is used the Gibbs–Thomson equation
becomes

δµi + 2γcrvi

rcr
= 0 (i = 1, 2) (6)

whereγcr is the surface tension of the critical droplet. From these two equations it is easy
to derive the consistency equation (revised classical theory) that determines the bulk droplet
composition [19] at the saddle point

v1δµ2 = v2δµ1. (7)

The nucleation rate according to the classical theory is expressed as

J = J0 exp(−βF ?) (8)

whereJ0 is a kinetic prefactor,βF ? is the free energy of formation of the critical droplet,
and β = 1/kBT wherekB is the Boltzmann constant. For binary condensation the pre-
exponential factor was first calculated by Reiss [17] by considering the contribution of
number fluctuations, i.e. by assuming that a droplet could grow or shrink by the condensation
or evaporation of a single molecule. Stauffer [18] extended the calculation to non-associated
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vapours and in the case where the impingement rate of different molecules was different. He
argued that in general the calculation of the nucleation flux should not be performed along
the steepest descent path as Reiss originally did. According to Stauffer the final expression
for the kinetic prefactor for the binary nucleation may be written in a form similar to the
one used in unary nucleation as follows

J0 = ρvABZ (9)

whereρv is the total density of condensible vapours (ρv = ρ1v + ρ2v), A is the surface area
of the droplet,B is the average growth rate, andZ is the Zeldovich non-equilibrium factor.
For non-associated vapour the average growth rate is given as

B = β1β2

β1 sin2 φ + β2 cos2 φ
(10)

and the impingement rateβi of speciesi is

βi = piv/(2πmikBT )1/2 (11)

wheremi is the molecular mass of theith component. The factorZ may be considered as
a generalization of the unary Zeldovich factor because it incorporates the effect of number
fluctuations. In the general case where the impingement rates of different components differ
it is given by

Z = −D11 cos2 φ + 2D12 cosφ sinφ +D22 sin2 φ

(D2
12−D11D22)1/2

(12)

where

Dij = 1

2

∂2F

∂ni∂nj

∣∣∣∣?
T ,P

. (13)

The superscript? denotes evaluation of the appropriate derivatives at the saddle point. The
angleφ defines the direction of growth of the critical droplet, and it is given by

tanφ = s +
(
s2+ β2

β1

)1/2

(14)

where

s = 1

2D12

(
D22

β2

β1
−D11

)
. (15)

If one component is dilute [26] (for example, component 1) the kinetic prefactor of the
equation for the nucleation rate reduces the kinetic prefactor of one-component nucleation
to becomeJ0 = ρv1Aβ1Z.

An alternative method of calculating the Zeldovich factor in binary systems is based
on the concept of a virtual monomer [27]. Accordingly, a virtual monomer is introduced
whose volume isv = (n1v1+n2v2)/(n1+n2). It can then be shown that the nucleation rate
may be expressed in terms of properties of the virtual monomer, i.e. the problem reduces
to one-component nucleation and the Zeldovich factor becomes [28]

Z = (βγ )1/2 v

2πr2
cr

. (16)

In the calculations of section 5 where the results of the classical theory are compared with
our results, we use this method to calculate the Zeldovich factor. Moreover, for consistency
with the definitions that we will be using in the rest of the paper, we define the Zeldovich
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factors as the inverse of the second-order free energy derivatives. For the case of a virtual
monomer we define (a result that will be used later in section 4)

σz = 1

(2π)1/2Z
. (17)

In the following section we consider number and energy fluctuations, we derive a
general expression for the equilibrium distribution that incorporates contributions from these
fluctuations, and we evaluate the fluctuation terms according to the classical nucleation
theory (in the capillarity approximation and for droplets that are considered to form ideal
solutions).

3. Equilibrium cluster distribution

The usual way to calculate the equilibrium distribution of clusters (liquid droplets) for a
given degree of supersaturation involves the minimization of the Helmoltz free energy with
respect to the concentration of various components subject to the constraints of constant
temperature, volume, and total mass. In the present work we extend this treatment to include
fluctuations in the energy of the clusters. We are interested in the contribution of energy
fluctuations to the nucleation rate, and in particular to the kinetic prefactor. The idea is that
a condensing or evaporating monomer not only alters the composition of the droplet, but
it also adds or removes the latent heat of condensation. Thereby the energy of the droplet
is modified. Hence, in addition to the usual number fluctuations, which give rise to the
Zeldovich factor, energy fluctuations will modify the kinetic prefactor.

We consider the effect of energy fluctuations in a cluster containingn1 molecules of
species 1,n2 molecules of species 2, and whose energy isε on the equilibrium cluster
distributionceq(n1, n2, ε). In accordance with the general theory of fluctuations the cluster
distribution becomes

ceq(n1, n2, ε) = D exp{−βF(n1, n2)} exp

{
− [ε − ε(n1, n2)]2

2σ 2
ε (n1, n2)

}
(18)

where the average cluster energy is denoted asε(n1, n2) and σε is the variance of the
cluster-energy probability distribution. The normalization coefficientD is determined from
the condition ∫ ∞

−∞
ceq(n1, n2, ε)dε = ceq(n1, n2). (19)

Number fluctuations about the critical cluster are calculated in the standard way by
performing a second-order Taylor series expansion of the exponents in equation (18). The
critical cluster is denoted as(n?1, n

?
2, ε) whereε = ε(n?1, n

?
2) is the average energy of the

critical cluster. The expansion of the first exponent yields

βF(n1, n2) = βF(n?1, n?2)+
1

2

∂2βF

∂n2
1

∣∣∣∣?δn2
1+

1

2

∂2βF

∂n2
2

∣∣∣∣?δn2
2+

∂2βF

∂n1∂n2

∣∣∣∣?δn1δn2 (20)

where deviations from the critical cluster values are expressed as

δn1 = n1− n?1 (21)

δn2 = n2− n?2. (22)

As discussed in the previous section, linear terms vanish because the saddle-point
configuration is an extremum (it determines the critical cluster parameters). The terms
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that arise from number fluctuations may be expressed in terms of the generalized Zeldovich
factors as follows

∂2βF

∂n2
1

∣∣∣∣? ≡ − 1

σ 2
1

(23)

∂2βF

∂n2
2

∣∣∣∣? ≡ − 1

σ 2
2

(24)

∂2βF

∂n1∂n2

∣∣∣∣? ≡ − 1

σ 2
12

. (25)

Note that in analogy to unary nucleation we introduce an explicit negative sign in the
definition of the generalized Zeldovich factors and we define them as the inverse of the
second-order free energy derivatives. Moreover, as noted by Stauffer in his analysis of
binary nucleation [18], the individual elements of the matrix∂2βF/∂n2

i that define the
generalized Zeldovich factors need not be negative, but the product of the corresponding
eigenvalues is.

The expansion of the second exponent in equation (18) (average cluster energy) in
combination with the previous expansion in terms of number fluctuations (cf equation (20))
results in

ceq(n1, n2, ε) = D exp{−βF(n?1, n?2)} exp

{
δn2

1

2σ 2
1

+ δn2
2

2σ 2
2

+ δn1δn2

σ 2
12

− 1

2σ 2
ε

×
[
δε2+

(
∂ε

∂n1

)2

δn2
1+

(
∂ε

∂n2

)2

δn2
2− 2

∂ε

∂n1
δn1δε

− 2
∂ε

∂n2
δn2δε + 2

∂ε

∂n1

∂ε

∂n2
δn1δn2

]}
(26)

where similarly to the previous definition of number fluctuations we have defined the energy
difference as

δε = ε − ε(n?1, n?2) (27)

and the average-energy derivatives are evaluated at the critical cluster.
The previous equation may be written in a more transparent form if we use the following

definition

Hi ≡ − ∂ε
∂ni

∣∣∣∣? (i = 1, 2) (28)

and if the normalization constant is determined from the normalization condition shown in
equation (19). Therefore, the final expression for the equilibrium cluster distribution that
incorporates the combined effects of number and energy fluctuations becomes

ceq(n1, n2, ε) = ceq(n
?
1, n

?
2)

(2π)1/2σε
exp

{
−δn2

1

[
H 2

1

2σ 2
ε

− 1

2σ 2
1

]
− δn2

2

[
H 2

2

2σ 2
ε

− 1

2σ 2
2

]
−δn1δn2

[
H1H2

σ 2
ε

− 1

σ 2
12

]
− δε2

2σ 2
ε

− H1

σ 2
ε

δn1δε − H2

σ 2
ε

δn2δε

}
. (29)

This general result will be used in the next section to determine the nucleation flux by
solving the appropriate Fokker–Planck equation for the cluster concentration. In what
follows we evaluate the various derivatives that appear in equation (29) under well-defined
approximations.
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The generalized Zeldovich factors for binary nucleation may be determined in the
capillarity approximation. If the Gibbs–Duhem equation for the bulk phase and the Gibbs
adsorption isotherm for the surface are used in the first derivatives of the free energy the
surface tension and the liquid-phase chemical potential derivatives are eliminated. The
second-order free energy derivatives (which determine the generalized Zeldovich factors
according to the definitions of equations (23)–(25)) may be expressed as

− 1

σ 2
i

= ∂βµli

∂ni
+ 2vi
rcr

∂βγ

∂ni
− βγ v

2
i

2πr4
cr

(i = 1, 2) (30)

− 1

σ 2
12

= ∂βµl1

∂n2
+ 2v2

rcr

∂βγ

∂n1
− βγ v1v2

2πr4
cr

. (31)

As discussed in the previous section, the free energy derivatives are taken keeping gas-
phase activities constant. Moreover, a consistent evaluation of equation (31), namely that
the order of differentiation with respect ton1 andn2 is not important, requires either that
the middle term is zero, i.e. that the surface tension derivatives with respect toni is zero
an observation that is in agreement with the revised classical theory, or that the surface
tension is a function ofntotal = n1 + n2. A more general expression for the generalized
Zeldovich factors, where the surface tension derivatives are explicitly calculated, may be
found in Mirabel and Katz [29].

For the numerical calculations that are discussed in section 5 we evaluate the previous
expressions (equations (30) and (31)) by making the approximation that droplets have
properties of macroscopic systems and that they form ideal solutions (see, also, Mirabel
and Clavelin [30] and Zeng and Oxtoby [13]). Consequently, the second-order free energy
derivatives with respect to particle number become

− 1

σ 2
1

= n?2

n?1(n
?
1+ n?2)

− βγ v
2
1

2πr4
cr

(32)

− 1

σ 2
2

= n?1

n?2(n
?
1+ n?2)

− βγ v
2
2

2πr4
cr

(33)

− 1

σ 2
12

= − 1

n?1+ n?2
− βγ v1v2

2πr4
cr

. (34)

It is instructive to note the similarity of these expressions to the expression for the
Zeldovich factor in unary nucleation. In classical unary nucleation the Zeldovich factor is

σ 2
1 =

2πr4
cr

βγ v2
= 9n4/3

2βγA1
(35)

wheren is the number of particles andA1 is the surface area of a monomer. (In deriving
equation (35) the usual assumption that the droplet surface tension is independent of
composition was used.) This expression should also be compared with equations (16)
and (17).

The average energy derivatives and the variance of the energy probability distribution
are evaluated under the approximation that the total energy of an(n1, n2) cluster is the
sum of the energy of its two independent components, i.e.ε(n1, n2) = ε(n1) + ε(n2).
Then, simple arguments from statistical mechanics give the following expression for the
mean-square energy fluctuations [31] (see also appendix 2 of [1])

σ 2
ε =

2∑
i=1

cinikBT
2 (36)
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where ci is the bulk specific heat per molecule of speciesi in the cluster and we have
assumed additivity of the specific heat.

The derivatives of the average energy with respect toni are re-expressed (under the
assumption of independent species) as follows (the derivation closely follows the derivations
of Barrett [25] and Federet al [1])

Hi = qi − (civ + 1
2kB)T (i = 1, 2) (37)

whereqi is the energy released upon addition of a monomer of vapouri to a cluster, and
civ is the molecular heat capacity of a monomer in the vapour phase at constant volume.
The quantityqi is given for one-component nucleation in [1]. Similar arguments give the
corresponding expression in the two-component case

qi = miLi − 1

2
kBT − γ ∂A(n1, n2)

∂ni
(38)

wheremi is the molecular mass of speciesi, Li is the differential latent heat of condensation
of speciesi, andA(n1, n2) is the total surface area of the cluster. In the calculations of
section 5 we approximate the differential latent heat of condensation with the latent heat
of condensation of pure speciesi. Equation (38) shows that the energy released when a
molecule condenses is less than the latent heat of condensation because part of the energy
is used to create the new surface area and part to raise the temperature (Federet al [1]).
As noted by Barrett [25] this derivation is valid if the temperature derivative of the surface
tension can be neglected.

As a final remark, in this section we should stress that the evaluation of the various
derivatives that appear in the exponent of the equilibrium cluster distribution (equation (29))
were evaluated using the classical expression for the Gibbs free energy for binary mixtures
[17] (cf equation (1)). We used an expression for the free energy of the formation of the
droplet that can be divided into a volume and a surface part, and the various parameters
were obtained from values for macroscopic systems. Alternatively, the droplet free energy
may be evaluated by other methods. An attractive choice is to use Monte Carlo simulations
to evaluate it, which, however, requires that the form of the interaction potential,Ui , in
the cluster be known. This is a severe limitation because in many cases the interaction
potential is not known. The classical theory expression for the droplet Gibbs free energy
of formation may be derived by approximating the cluster potential.

Another limitation of the classical approach is the use of macroscopic quantities, such as
the bulk surface tension, to describe the properties of the critical cluster. Since the clusters
under consideration usually consist of only a few hundred molecules, it is doubtful whether
macroscopic parameters can be used with impunity. It is clear that a theory which takes
into account corrections to the bulk properties of small clusters is required. In the case of
one-component systems an approach based on the use of the second virial coefficient [32]
has been proposed. For binary mixtures the calculation of the second virial coefficients is
more tedious, but a systematic way to evaluate them [33] has also been suggested. The
evaluation of second virial coefficients for binary mixtures is beyond the scope of the present
work.

4. Fokker–Planck equation for binary droplets

The calculation of the nucleation rate of binary droplets requires information about the
mechanism of cluster formation, the effect of fluctuations of relevant variables, and the rate
at which these processes occur. The first approach to calculate the nucleation flux of a
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single-component droplet was made by Becker and Döring [5]. Zeldovich [34] improved
their approach by assuming steady-state concentrations. These approaches are based on
the assumption that only the gain or loss of monomers in the clusters are important, and
hence they do not take into account other factors that influence the growth of the droplets.
Barrett [25] improved these descriptions by incorporating the effect of energy fluctuation
in single-component nucleation. In the present work we follow Langer [24] to introduce
a general method that considers changes in the cluster concentration in binary nucleation
by deriving an appropriate Fokker–Planck equation. Our work is an extension of the work
of Barrett [25] to binary nucleation. The extension to multicomponent nucleation is easily
derived.

The appropriate Fokker–Planck equation is derived by considering the general form of
the master equation for the time evolution of the concentration of binary droplets since the
master equation describes gains and losses. The transformation of the master equation to a
Fokker–Planck equation is made by performing a second-order Taylor expansion in the size
and energy of the clusters. The resulting Fokker–Planck equation is solved via the method
presented by Langer [24] to solve multidimensional Fokker–Planck equations which appear
in nucleation problems.

We begin by introducing the form of the master equation for binary droplets. Consider
a physical system which hasN degrees of freedom and, hence, it is described by 2N

coordinates and canonically conjugate momenta. We denote these coordinates collectively
by aj , wherej runs from 1 to 2N . The time change of the cluster concentrationc(a) is
described by the master equation

∂c(a)

∂t
=
∫

da′ [P(a, a′)c(a′)− P(a′, a)c(a)] (39)

whereP(a, a′) is the rate (transition probability) at which the concentrationc changes from
configurationa′ to configurationa. Changes due to the dynamical behaviour of the clusters
are not included in this form of the master equation.

For binary clusters of species 1 and 2 and energyε the master equation may be explicitly
written as

∂

∂t
c(n1, n2, ε; t) =

∫ ∞
−∞

dε′
∫ ∞

1
dn′1

∫ ∞
1

dn′2

×[R(n1n2ε|n′1n′2ε′)c(n′1n′2ε′; t)− R(n′1n′2ε′|n1n2ε)c(n1, n2, ε; t)] (40)

whereR(n′1n
′
2ε
′|n1n2ε) is the transition probability that a cluster rate in state(n1n2ε) moves

to state(n′1n
′
2ε
′).

The transition probability that a cluster moves from one configuration to another may be
written as the sum of a condensation rate for clusters with a monomer less than the required
cluster size and an evaporation rate for clusters with a monomer more than the required
cluster size. We make the usual assumption that condensation and evaporation occur only
via the addition or the loss of either a monomer of vapour 1 or vapour 2. These transitions
change the number of molecules(n1, n2) and the energy of the clusterε. Therefore, the
transition rateR may be written as

R(n′1n
′
2ε
′|n1n2ε) = R(1)cond(n

′
1n2ε

′|n1n2ε)δ(n
′
2− n2)+ R(2)cond(n1n

′
2ε
′|n1n2ε)δ(n

′
1− n1)

+R(1)evap(n
′
1n2ε

′|n1n2ε)δ(n
′
2− n2)+ R(2)evap(n1n

′
2ε
′|n1n2ε)δ(n

′
1− n1) (41)

where the superscript refers to species number, the subscript ‘cond’ refers to condensation
(n′ = n+1), and ‘evap’ refers to evaporation (n′ = n−1). Specifically,R(2)cond(n1n

′
2ε
′|n1n2ε)

is the transition rate at which a cluster(n1, n2, ε) moves to the required cluster size(n1, n
′
2ε
′)
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via the condensation of a species 2 monomer with energyε′ − ε, andR(2)evap(n1n
′
2ε
′|n1n2ε) is

the transition rate at which a cluster(n1, n2, ε) moves to the required cluster size(n1, n
′
2ε
′)

via the evaporation of a species 2 monomer of energyε′ − ε. In equation (41) we have
introduced the Dirac delta function,δ(x) and we are using a continuous description.

The condensation and the evaporation rates can be written as (see, also [1])

R
(1)
cond(n

′
1n2ε

′|n1n2ε) =
∫ ∞
−∞

A(A(n1, n2))β1(x)δ(ε
′ − {ε + q1+ x})δ(n′1− {n1+ 1}) dx

(42)

R
(2)
cond(n1n

′
2ε
′|n1n2ε) =

∫ ∞
−∞

A(A(n1, n2))β2(x)δ(ε
′ − {ε + q2+ x})δ(n′2− {n2+ 1}) dx

(43)

R(1)evap(n
′
1n2ε

′|n1n2ε) =
∫ ∞
−∞

A(A(n1, n2))α1(n1, n2, ε, x)δ(ε
′ − {ε − q1− x})

δ(n′1− {n1− 1}) dx (44)

R(2)evap(n1n
′
2ε
′|n1n2ε) =

∫ ∞
−∞

A(A(n1, n2))α2(n1, n2, ε, x)δ(ε
′ − {ε − q2− x})

δ(n′2− {n2− 1}) dx (45)

whereβ1(x) is the impingement rate of a vapour monomer 1 with energyq1 + x, x being
the corresponding energy fluctuation with respect to the mean energy of the impinging
molecule, andα1(n1, n2, ε, x) is the vapourization coefficient of the cluster of interest.
Terms with subscripts 2 have the same meaning as those described except they refer to a
vapour monomer of species 2. The vapourization coefficient is related to the impingement
rate via the principle of detailed balance

A(n1, n2)α1(n1, n2, ε; x)ceq(n1, n2, ε) = A(n1− 1, n2)β1(x)ceq(n1− 1, n2, ε − q1− x)
(46)

A(n1, n2)α2(n1, n2, ε; x)ceq(n1, n2, ε) = A(n2− 1, n1)β2(x)ceq(n2− 1, n1, ε − q1− x)
(47)

where, as before,ceq is the equilibrium cluster distribution. Hence, a detailed balance can
be used to eliminate the dependence of the evaporation transition rates on the vapourization
coefficients to obtain

R(1)evap(n
′
1n2ε

′|n1n2ε) =
∫ ∞
−∞

A(A(n1− 1, n2)β1(x)
ceq(n1− 1, n2, ε − q1− x)

ceq(n1− 1, n2, ε)

×δ(ε′ − {ε − q1− x})δ(n′1− {n1− 1}) dx. (48)

A similar result is obtained forR(2)v (n1n
′
2ε
′|n1n2ε).

The substitution of equations (46), (47) into equation (41), and their subsequent
substitution into equation (40), followed by second-order Taylor expansion about(n1, n2, ε)

yields

∂

∂t
c(n1, n2, ε; t) =

∫ ∞
−∞

dx
2∑
i=1

βi(x)

{(
∂

∂ni
+ δεi ∂

∂ε

)
[ceq(n1, n2, ε)A(n1, n2)]

×
(
∂

∂ni
+ δεi ∂

∂ε

)[
c(n1, n2, ε; t)
ceq(n1, n2, ε)

]
+ ceq(n1, n2, ε)A(n1, n2)

×
(
∂2

∂n2
i

+ 2δεi
∂2

∂ni∂εi
+ δε2

i

∂2

∂ε2

)[
c(n1, n2, ε; t)
ceq(n1, n2, ε)

]}
(49)
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where we have defined the fluctuation terms as

δεi = qi + x (i = 1, 2). (50)

Integration over the energy fluctuationsx involves the following integrals∫ ∞
−∞

dx βi(x) = βi = piv/(2πmikBT )1/2 (i = 1, 2) (51)

1

βi

∫ ∞
−∞

dx xβi(x) dx = x = 0 (i = 1, 2) (52)

1

βi

∫ ∞
−∞

dx βi(x)(qi + x)2 = q2
i + x2 (i = 1, 2). (53)

The first equation, (51), is the impingement rate of speciesi (cf equation (11) in the first
section), whereas the second equation (equation (52)) is zero by symmetry. The quantity
qi , the energy released upon addition of a monomer of vapouri to a cluster, has been
discussed in the previous section. The mean-square energy fluctuations (equation (53)) of
the impinging monomers is given by [1]

x2 = b2 =
∑
i=1,2

{(
civ + 1

2
kB

)
kBT

2+ βc
βi

(
civ,c + 1

2
kB

)
kBT

2

}
(54)

whereβc is the carrier-gas impingement frequency andciv,c the specific heat of the carrier
gas. The second term in equation (54) arises from the contribution of impinging carrier-gas
molecules to the mean-square energy fluctuations. In the present work we do not consider
carrier-gas contributions to the nucleation rate, and hence it is omitted in the calculations
that are presented in the following section. An extensive treatment of carrier-gas effects is
given in [35, 36].

After the evaluation of the integrals over the energy fluctuations we obtain the final
expression for the time evolution of the concentration of clustersc, which, expressed in
compact form, becomes

∂

∂t
c(n1, n2, ε; t) =

(
∂

∂n1
,
∂

∂n2
,
∂

∂ε

)
×
[
ceq(n1, n2, ε)A(n1, n2)β1Θ

(
∂/∂n1

∂/∂n2

∂/∂ε

)
c(n1, n2, ε; t)
ceq(n1, n2, ε)

]
. (55)

The matrixΘ is given by

Θ =
( 1 0 q1

0 β2/β1 β2q2/β1

q1 β2q2/β1 (q2
1 + x2)+ β2(q

2
2 + x2)/β1

)
. (56)

Langer [24], in his statistical analysis of the decay of metastable states, developed
a general method to obtain the steady-state solution of equations that arise in nucleation
problems (which are similar to equation (55)). In the following we follow Langer’s approach
(which has also been used by Barrett in his analysis of unary nucleation [25]) to obtain the
steady-state solution. In essence, the approach to obtaining the steady-state nucleation
flux is based on the following observation. The phase transition from vapour to liquid is
interpreted as a passage from one minimum (local) of the free energy of the system to
the vicinity of another minimum (absolute) with lower free energy. The passage from one
minimum to another is most likely to happen across the lowest intervening saddle point of
the free energy. Therefore, the most important contribution to the nucleation flux arises
from the solution of equation (55) in the immediate neighbourhood of the saddle point.
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The equation is easier to solve in a coordinate system where the exponent of the
equilibrium distribution is diagonal. We change coordinate systems from(n1, n2, ε) to a
new coordinate system(x, y, z) such that the exponent of the equilibrium cluster distribution
(equation (29)) is diagonal. Clearly, this coordinate transformation is a rotation whose
matrix representation is an orthogonal matrix: the new variables (x, y, z) are related to the
old ones (n1, n2, ε) by an orthogonal transformation which is represented by a matrixM
whose columns are the eigenvectors of the matrix(

H 2
1/σ

2
ε − 1/σ 2

1 H1H2/σ
2
ε − 1/σ 2

12 H1/σ
2
ε

H1H2/σ
2
ε − 1/σ 2

12 H 2
2/σ

2
ε − 1/σ 2

2 H2/σ
2
ε

H1/σ
2
ε H2/σ

2
ε 1/σ 2

ε

)
. (57)

The eigenvalues of this matrix are denoted byλi, i = 1, 2, 3. Since the free energy decreases
in one direction of the saddle point (the direction of the stable phase) one eigenvalue (which
is chosen to beλ1) must be negative. In general, we expect that a number of eigenvalues will
be identically zero corresponding to broken symmetries (for example, translational modes
should have vanishing eigenvalues). We will return to this point in section 5 where the
eigenvalues are numerically evaluated.

Under this rotation matrixΘ transforms as

MTΘM = Θnew (58)

and its elements are

Θnew=
(
θ11 θ12 θ13

θ12 θ22 θ23

θ13 θ23 θ33

)
. (59)

Note thatΘnew is symmetric sinceΘ was symmetric.
In the new coordinate system the steady-state equation for the cluster concentration in

vector representation becomes

5[ceqA(n1, n2)β12new5F(x, y, z)] = 0 (60)

where we have definedF(x, y, z) = c/ceq. The explicit form of the steady-state equation
in the new coordinate system is

5
{
ceq(n

?
1, n

?
2)

(2π)1/2σε
exp[− 1

2(λ1x
2+ λ2y

2+ λ3z
2)]A(n?1, n

?
2)β1Θnew5F(x, y, z)

}
= 0. (61)

Following Langer [24] (and Barrett [25]) we make the ansatz that the solutionF(x, y, z)

is a function of a linear combination ofx, y andz according to the following definition

F(x, y, z) = f (ν1x + ν2y + ν3z) ≡ f (u). (62)

This ansatz can be justifieda posteriori because it will be shown that it gives a solution
of equation (60) with all the required properties, [25, 37]. Moreover, it can be justified by
solving the time-dependent problem [24]. The substitution of equation (62) in equation (61)
yields the following ordinary differential equation for the single-variable functionf (u)

(θ11ν
2
1 + θ12ν1ν2+ θ13ν1ν3+ θ12ν1ν2+ θ22ν

2
2 + θ23ν2ν3+ θ13ν1ν3+ θ23ν2ν3+ θ33ν

2
3)

×f ′′(u)− [λ1(θ11ν1+ θ12ν2+ θ13ν3)x + λ2(θ12ν1+ θ22ν2+ θ23ν3)y

+λ3(θ13ν1+ θ23ν2+ θ33ν3)z]f ′(u) = 0. (63)

Primes denote differentiation off with respect to the variableu. According to the ansatz
for the form of the solution of the steady-state equation the previous equation must contain
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only functions ofu = ν1x + ν2y + ν3z. Hence, the term in the curly brackets must be
proportional tou(

λ1θ11 λ1θ12 λ1θ13

λ2θ12 λ2θ22 λ2θ23

λ3θ13 λ3θ23 λ3θ33

)(
ν1

ν2

ν3

)
= κ

(
ν1

ν2

ν3

)
(64)

whereκ is an eigenvalue of the matrix on the left-hand side of the previous equation.
From (64) it is easy to derive an important relation that will be used in the calculation

of the total nucleation rate

ν2
1

λ1
+ ν

2
2

λ2
+ ν

2
3

λ3
= 0 (65)

0 = θ11ν
2
1 + θ22ν

2
2 + θ33ν

2
3 + 2θ12ν1ν2+ 2θ13ν1ν3+ 2θ23ν2ν3

κ
< 0. (66)

When writing the expression for0 we have assumed thatκ is the negative eigenvalue of
the matrix equation (64). This result is confirmed by our numerical calculations and it is
consistent with the general analysis of the Fokker–Planck equation given by Langer [24],
and the results of Barrett [25] for one-component nucleation. Physically,κ corresponds to
the growth rate of the unstable mode at the saddle point (see [24]).

The solution of equation (63) that satisfies the conditionf (u)→ 1 for u→−∞ is the
function

f (u) = 1

2

[
1− erf

(
u

(2|0|)1/2
)]
. (67)

When this solution is substituted into equation (61) the nucleation flux is determined if the
components of the steady-state solution are identified with the steady-state components of
nucleation flux,Jx , Jy andJz. Under this identification we obtain(
Jx
Jy
Jz

)
= − ceq(n

?
1, n

?
2)

2πσε |0|1/2A(n
?
1, n

?
2)β1κ

(
ν1/λ1

ν2/λ2

ν3/λ3

)

× exp

{
−1

2

[
λ1x

2+ λ2y
2+ λ3z

2+ (ν1x + ν2y + ν3z)
2

|0|
]}
. (68)

The total nucleation rate is determined by integrating the fluxJ across any surface not
parallel to it [24]. For convenience we chose to integrate across the surfacex = 0. The
integration yields

J =
∫ ∞
−∞

dy
∫ ∞
−∞

dz Jx(0) = ceq(n
?
1, n

?
2))

(2π |λ1|λ2λ3)1/2σε
A(n?1, n

?
2)β1|κ|. (69)

In deriving the previous equation we used equations (65), (66) in the following form

1+ ν2
2

λ2|0| +
ν2

3

λ3|0| =
ν2

1

|λ10| (70)

since λ1 has been assumed to be the negative eigenvalue of the matrix shown in
equation (57). The product of eigenvalues that appears in equation (69) is a general result,
first derived in its full generality by Langer [24].

The previous equation may also be written in terms of the free energy of formation of
a critical cluster as

J = ρv

(2π |λ1|λ2λ3)1/2σε
A(n?1, n

?
2)β1|κ| exp(−βF ?) (71)
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whereρv is the total density of condensible vapours (cf equation (9)). In a future work
we will show how our result compares with previous expressions for the nucleation rate.
In particular, the limiting case of our result when energy fluctuations are neglected will be
compared with the results of [18, 22].

The ratio between the new steady-state expression for the nucleation rateJ and the
classical expression is given by

J

Jclass
= σz

σε

|κ|
(|λ1|λ2λ3)1/2

(72)

whereσz is the Zeldovich factor in classical nucleation theory. For the classical nucleation
rate Jclass we have used an expression in terms of virtual monomers (cf section 2). In
particular, the binary nucleation rate was evaluated according to the following expression
[28]

Jclass= ρv

(2π)1/2σz
A(n?1, n

?
2)β1 exp(−βF ?). (73)

5. Results and discussion

The expression we derived for the total nucleation rate was evaluated for the water–ethanol
binary system. The free energy derivatives and the other required quantities were evaluated
as described in section 2. The numerical evaluation of eigenvalues and the eigenvectors
was performed using routines reproduced in standard textbooks (for example those shown
in [38]). The required thermodynamic data were obtained as described in great detail by
Lazaridiset al [28] and Laaksonen [39].

We present three groups of figures. Figure 1 shows the temperature dependence of the
ratio J/Jclass and of the eigenvaluesλi(i = 1, 2, 3), figure 2 shows their dependence on
water activity, and figure 3 shows their dependence on ethanol activity. We show explicitly
the dependence of the eigenvalues on the various parameters because the product of the
eigenvalues is the new aspect of our result. All the eigenvalue figures show that there
is a positive and a negative eigenvalue and one that is almost zero. As discussed in the
text, the negative eigenvalue corresponds to fluctuations that stabilize the droplet, namely
fluctuations in the direction of the stable, absolute free energy minimum. Inspection of the
numerical values shows that the almost-zero eigenvalue is two to three orders of magnitude
lower than the largest eigenvalue. It is important to remark that this eigenvalue is not
identically zero (i.e. it does not correspond to a broken symmetry of the system) but it
arises from the choice of binary system we are analysing. For the water–ethanol system the
thermodynamic properties of water and ethanol we used are very similar and this almost
numerical symmetry is reflected in the existence of an almost-zero eigenvalue.

Figure 1(b) shows the temperature dependence of the ratioJ/Jclass (water activity
Awater,v = 0.8 and ethanol activityAethanol,v = 1.2). The results show that the ratio increases
with increasing temperature. The maximum reported value occurs in the temperature range
of interest (≈310 K) and its value is approximately 28. Figure 2(b) shows the dependence
of the ratio on water activity (at 293 K and for ethanol activity 1.2). The ratio decreases with
increasing water activity. The dependence of the ratio on water activity is more pronounced
for water activities less than 1, an effect that is in agreement with experimental results [40].
The dependence of the ratio on ethanol activity is shown in figure 3(b) (at 220 K and for
water activity 1.0). The results presented in the figure show that higher ethanol activities
lead to lower values of the ratio. As in the case of unary nucleation [25] the effect of
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Figure 1. Numerical evaluations for the water–ethanol system at different temperatures.
(a) Eigenvaluesλ1, λ2, λ3 versus temperature. (b) J/Jclass versus temperature (Awater,v =
0.8, Aethanol,v = 1.2).

energy fluctuations does not modify the classical result significantly, even though the trend,
namely higher nucleation rates, improves the comparison with experimental data.

We also compare explicitly the predictions of our model with experimental data [40] as
a function of temperature, water, and ethanol activity. These results are shown in table 1.
We note (in conjunction with the results shown in the figures) that the predictions of our
expression are in better agreement with the experimental data than the predictions of the
classical theory. Nevertheless, the improvements made by the introduction cluster-energy
fluctuations in the steady-state nucleation rate are not sufficient to explain in a satisfactory
manner the experimental results for the water–ethanol system. A possible explanation of
the disagreement of our results with experimental data is the neglect of surface enrichment
of the alcohol at the surface of the binary droplet [39, 41].
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Figure 2. Numerical calculations for the water–ethanol system at different water activities. (a)
Eigenvaluesλ1, λ2, λ3 versus water activity. (b) J/Jclass versus water activity (Aethanol,v =
1.2, T = 293.15 K).

6. Conclusions

We have derived an analytical expression for the total nucleation rate in a binary system
that incorporates the combined effects of number and cluster-energy fluctuations. Whereas
previous theories considered solely the effect of number fluctuations on the pre-exponential
factor in the expression for the total nucleation rate we argue that the gain or loss of a
monomer will also induce energy fluctuations. Our result is based on the derivation and
steady-state solution of a Fokker–Planck equation for the cluster distribution in size and
energy. The resulting equation is solved in the immediate neighbourhood of the saddle point
since the main contribution to the nucleation rate arises from that region. The derivation
and the solution of the Fokker–Planck equation follow the analysis of Langer [24] and
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Figure 3. Numerical calculations for the water–ethanol system at different ethanol activities. (a)
Eigenvaluesλ1, λ2, λ3 versus ethanol activity. (b) J/Jclass versus ethanol activity (Awater,v =
1.0, T = 220.15 K).

they may be considered as a generalization of Barrett’s [25] analysis to two-component,
homogeneous nucleation.

We show that a consistent treatment of fluctuations of three relevant variables (particle
number of each species and cluster energy) renders the pre-exponential factor (kinetic
prefactor) of the expression for the nucleation rate dependent on the product of three
eigenvalues. These eigenvalues are determined from the matrix that describes the effect of
fluctuations on the equilibrium cluster distribution. One of the eigenvalues is numerically
shown to be negative, a result that is in agreement with general arguments about the decay
of metastable states.

The general expression of the nucleation rate is numerically evaluated in the capillarity
approximation and for droplets that form ideal solutions. Theoretical predictions are
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Table 1. Comparison of theoretical predictions based on the expression that incorporates cluster-
energy fluctuations,Jtheory, with the experimental results,Jexp, of Schmitt et al [40] for the
water–ethanol system. The nucleation rates are expressed in particles/cm3/s.

T Awater,g Aethanol,g Jtheory Jexp

263 0.459 2.111 7.4× 10−2 105

263 0.897 1.799 4.2× 10−3 103

263 0.923 1.847 1.6× 10−1 104

263 0.949 1.895 4.4× 100 105

263 4.843 0.160 1.4× 10−3 104

263 5.957 0.0260 1.7× 101 103

263 6.618 0.0233 2.0× 103 105

273 0.434 1.947 5.8× 10−2 104

273 0.89 1.743 2.2× 10−1 103

273 0.938 1.827 8.8× 101 105

273 4.074 0.148 1.2× 10−4 103

273 5.087 0.0197 2.0× 101 103

273 5.609 0.0222 3.4× 103 105

283 0.434 1.899 1.5× 102 105

283 0.897 1.705 1.6× 102 104

283 0.917 1.739 1.8× 103 105

283 3.706 0.153 5.6× 10−4 104

283 4.468 0.0202 5.2× 101 104

293 0.416 1.778 5.4× 102 103

293 0.434 1.848 2.0× 105 105

293 0.871 1.606 1.2× 103 104

293 3.386 0.152 4.2× 10−3 104

293 4.064 0.0183 4.8× 102 103

compared with experimental data for the water–ethanol binary system, and they are
compared with predictions of the classical binary nucleation rate expressed in terms of
virtual monomers. It is shown that the agreement between theoretical predictions and
experimental results improves; nevertheless the agreement is not satisfactory. It is argued
that a possible reason for the discrepancy is the neglect of surface enrichment.

In a future work our results will be compared with previous expressions for the
binary nucleation rate [18, 22] with an emphasis on the saddle-point evaluation of the
nucleation rate and the effect of cluster-energy fluctuations on the direction of growth of
the nucleating droplet. Another possible use of our work is its application to other binary
systems, for example the water–sulphuric acid system [42]. The extension of our results to
multicomponent nucleation is easily obtained.
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